
SGU-Editorial: A Small Dataset of Competitive Programming

Problems with LLM-Enhanced Editorials

Radoslav Dimitrov
contact@radoslav11.com

Abstract

State-of-the-art large language models (LLMs)
perform poorly on problems from the Saratov
State University (SGU) Online Judge, likely be-
cause SGU problems feature a diverse range of
algorithmic ideas underrepresented in existing
training datasets. To address this, we present
SGU-Editorial, a small dataset containing 250
competitive programming problems enhanced
with detailed editorials. In this work we present
v1, the first version of the dataset. Each problem
includes the original statement, accepted solu-
tions in C++ or Python, and LLM-enhanced edi-
torials containing algorithm explanations, imple-
mentation guides, complexity analysis, and ref-
erence implementations. Future versions will ex-
pand the problem coverage as we continue solv-
ing the SGU archive.

Keywords: competitive programming, dataset,
code reasoning, LLM, editorial generation, algo-
rithm explanation

1 Introduction

The intersection of large language models
(LLMs) and competitive programming has
emerged as an important area of research. Re-
cent advances have shown that LLMs can solve
programming problems at varying difficulty lev-
els, from basic coding exercises to International
Olympiad in Informatics (IOI) problems [1,
5]. For example, OlympicCoder models have
demonstrated strong performance on IOI prob-
lems, even outperforming some closed-source
models [7]. However, state-of-the-art models still
struggle with certain problem sources. In par-

ticular, we observe that LLMs perform poorly
on problems from the Saratov State University
(SGU) Online Judge.

The SGU (Saratov State University) Online
Judge, known as acm.sgu.ru, was created ap-
proximately 20 years ago by competitive pro-
gramming enthusiasts from Saratov University,
including Mike Mirzayanov (who later founded
Codeforces) and Andrew Lazarev. The plat-
form hosted ACM ICPC-style problems and was
widely used for training. Although the origi-
nal infrastructure became outdated, the prob-
lems were preserved and migrated to Codeforces
as a dedicated “acmsguru” section [4], reflecting
continued interest in this historical problemset.

We hypothesize that LLMs struggle with SGU
problems because they feature a diverse range
of algorithmic ideas and problem-solving tech-
niques that are underrepresented in existing
competitive programming datasets. The SGU
archive contains problems with unique formu-
lations and solution approaches that may not
appear frequently in more commonly scraped
sources like modern Codeforces contests or Leet-
Code.

Existing competitive programming datasets
such as POJ-104 [6], COFO [2], and CodeCon-
tests [5] focus primarily on collecting source code
submissions for tasks like program classification,
clone detection, and code generation. While
valuable, these datasets draw from a limited set
of sources and typically lack detailed explana-
tions of why particular algorithms work, how
to arrive at the solution, and what insights are
needed to solve the problem.

In competitive programming, such explana-
tions are called editorials—documents that pro-

1



vide problem analysis, algorithm descriptions,
implementation guidance, and complexity anal-
ysis. Editorials are essential learning resources
but are time-consuming to write and often un-
available or incomplete for many problems.

In this work, we present SGU-Editorial, a
small dataset that addresses this gap. We
present v1, the first version of the dataset. It
contains:

1. A curated collection of 250 competitive pro-
gramming problems from the SGU Online
Judge with original problem statements and
commented accepted solutions. Future ver-
sions will expand the coverage.

2. LLM-generated editorials for each problem,
created using reasoning models (o1, o3 and
GPT-5 series), containing structured expla-
nations with algorithm analysis, implemen-
tation guides, and reference solutions in
both C++ and Python.

We release this initial version publicly to en-
able early research while we continue expanding
the dataset.

2 Related Work

Several datasets have been proposed for competi-
tive programming and code understanding tasks.

POJ-104 [6] consists of 104 programming
problems from the Peking University Online
Judge with approximately 500 C/C++ solutions
per problem, totaling around 52K programs. It
is primarily used for program classification tasks.

COFO [2] is a larger dataset scraped from
Codeforces containing 809 problems with 369K
source codes in C, C++, Java, and Python. It
includes metadata such as problem tags, speci-
fications, and test cases, targeting classification
and tagging tasks.

CodeContests [5] is a dataset of competi-
tive programming problems used to train Alpha-
Code, containing problems from Codeforces, De-
scription2Code, and CodeNet with input-output
examples and solutions.

APPS [3] contains 10,000 coding problems of
varying difficulty with test cases and solutions,
designed for evaluating code generation capabil-
ities.
These datasets focus on the code aspect of

competitive programming. In contrast, SGU-
Editorial focuses on the reasoning aspect by
providing detailed editorials that explain the
problem-solving process.

3 Methodology

3.1 Source Problems

The SGU (Saratov State University) Online
Judge was one of the pioneering competitive
programming platforms, hosting problems from
ACM ICPC-style competitions. The problems
span various algorithmic topics including graph
theory, dynamic programming, number theory,
computational geometry, and combinatorics.
We collected 250 problems from the SGU

archive. For each problem, we obtained:

• The original problem statement with in-
put/output specifications.

• Sample input and output test cases.

• An accepted solution written by the first au-
thor in C++ or Python.

3.2 Editorial Generation

For each problem, we generated editorials using a
combination of reasoning-capable language mod-
els, including OpenAI’s o1, o3, GPT-5, GPT-5.1,
and GPT-5.2. The input to each model consisted
of the problem statement, sample I/O, and an
accepted solution. The generated editorials were
then manually reviewed and edited to correct
any inaccuracies or improve clarity.

3.3 Quality Assurance

All solutions in the dataset are accepted solu-
tions that have passed the online judge’s test
suite. Furthermore, a large chunk of the solu-
tions were made to already contain a brief de-
scription of the approach as comments. This

2



makes LLM-generated editorials on average be-
ing in a good shape, but we also did do some
basic spot-checking for correctness.

4 Data Description

The dataset is organized in two main di-
rectories: dataset/ and problems/. The
dataset/ directory contains three files for
each problem: pXXX.txt, the enhanced edito-
rial; pXXX raw.txt, which contains the origi-
nal problem statement, solution, and sample
I/O; and pXXX finetune.txt, which is a ver-
sion of the data formatted for model train-
ing. The problems/ directory contains the same
information as the raw.txt files, but orga-
nized as individual files for each problem (e.g.,
statement.txt, pXXX.cpp).

Each editorial follows a consistent structure,
including a concise problem statement, a de-
tailed editorial with algorithm explanations,
commented reference implementations in C++
and Python, and a brief summary for experi-
enced programmers.

The dataset contains 250 problems, with 227
solutions in C++ and 27 in Python. The av-
erage editorial length is approximately 1317 to-
kens, and the average solution length is approx-
imately 130 lines of code.

5 Future Work

SGU-Editorial is an ongoing effort. We plan to
extend this work in several directions:

Expanded Coverage: We are actively solv-
ing additional SGU problems. Future versions
will include more problems as we work through
the archive, eventually aiming for comprehensive
coverage.

Finetuning Analysis: We intend to con-
duct experiments finetuning LLMs on the SGU-
Editorial dataset to measure whether exposure
to these problems and editorials improves model
performance on SGU and similar challenging
problem sets. Some preliminary experiments
with small open source models suggest that this
might be the case.

Evaluation Benchmark: We plan to de-
velop SGU-Editorial into a proper evaluation
benchmark by generating comprehensive test
data for each problem. This would enable stan-
dardized evaluation of code generation models on
problems that current state-of-the-art systems
find difficult.

6 Conclusion

We presented SGU-Editorial, a small dataset
containing 250 competitive programming prob-
lems from the SGU Online Judge, enhanced with
detailed LLM-generated editorials. In this work
we presented v1, the first version of the dataset.
SGU problems present a challenge for current
state-of-the-art LLMs, likely due to the diverse
algorithmic ideas underrepresented in existing
training data. Each problem in our dataset in-
cludes a structured editorial with algorithm ex-
planations, implementation guides, and refer-
ence solutions in multiple languages.
SGU-Editorial has certain limitations, includ-

ing its relatively small scale (250 problems), the
provision of a single reference solution per prob-
lem, and the potential for subtle inaccuracies in
LLM-generated editorials.

Data Availability

The dataset is continuously updated
and available at https://github.com/

radoslav11/acm-sgu. The complete dataset
for v1, which is presented in this work,
is available as a single zip archive at
https://radoslav11.com/sgu-dataset/

sgu-editorial-dataset-v1.zip.

Acknowledgments

We thank Saratov State University for the orig-
inal problem archive, and OpenAI for access to
the reasoning models used in editorial genera-
tion.

3

https://github.com/radoslav11/acm-sgu
https://github.com/radoslav11/acm-sgu
https://radoslav11.com/sgu-dataset/sgu-editorial-dataset-v1.zip
https://radoslav11.com/sgu-dataset/sgu-editorial-dataset-v1.zip


References

[1] Google DeepMind AlphaCode Team. Alpha-
code 2 technical report. 2023.

[2] Kuldeep Gautam, S VenkataKeerthy, and
Ramakrishna Upadrasta. Cofo: Code-
forces dataset for program classification,
recognition and tagging. arXiv preprint
arXiv:2503.18251, 2025.

[3] Dan Hendrycks, Steven Basart, Saurav Ka-
davath, Mantas Mazeika, Akul Arora, Ethan
Guo, Collin Burns, Samir Puranik, Horace
He, Dawn Song, et al. Measuring coding chal-
lenge competence with apps. arXiv preprint
arXiv:2105.09938, 2021.

[4] Vitaliy Kudasov. Codeforces: acm.sgu.ru
comes back. https://codeforces.com/

blog/entry/59070, 2018. Codeforces Blog.

[5] Yujia Li, David Choi, Junyoung Chung,
Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Fe-
lix Gimeno, Agustin Dal Lago, et al.
Competition-level code generation with al-
phacode. Science, 378(6624):1092–1097,
2022.

[6] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and
Zhi Jin. Convolutional neural networks over
tree structures for programming language
processing. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2016.

[7] Guilherme Penedo, Anton Lozhkov, Hynek
Kydĺıček, Loubna Ben Allal, Edward Beech-
ing, Agust́ın Piqueres Lajaŕın, Quentin
Gallouédec, Nathan Habib, Lewis Tun-
stall, and Leandro von Werra. Codeforces
cots. https://huggingface.co/datasets/

open-r1/codeforces-cots, 2025.

4

https://codeforces.com/blog/entry/59070
https://codeforces.com/blog/entry/59070
https://huggingface.co/datasets/open-r1/codeforces-cots
https://huggingface.co/datasets/open-r1/codeforces-cots

	Introduction
	Related Work
	Methodology
	Source Problems
	Editorial Generation
	Quality Assurance

	Data Description
	Future Work
	Conclusion

